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A B S T R A C T

Rainy images severely degrade visibility and make many computer vision algorithms invalid. Hence, it is
necessary to remove rain streaks from a single image. In this paper, we propose a novel end-to-end deep
learning based deraining method. Previous methods neglect the correlation between different layers with
different receptive fields that loss a lot of important information. To better solve the problem, we develop
a multi-level guided residual block that is the basic unit of our network. In this block, we utilize multi-level
dilation convolutions to obtain different receptive fields and the layer with smaller receptive fields to guide
the learning of larger receptive fields. Moreover, in order to reduce the model sizes, the parameters are shared
among all multi-level guided residual blocks. Experiments illustrate that guided learning improves the deraining
performance and the shared parameters strategy is also feasible. Quantitative and qualitative experimental
results demonstrate the superiority of the proposed method compared with several state-of-the-art deraining
methods.

1. Introduction

Image processing is an important research field and usually acts
as preprocessing of numerous applications in artificial intelligence
domain. Rainy images often degrade the visibility and make the back-
ground scene misty, which will seriously influence the accuracy of
many computer vision systems, e.g., object detection, object track-
ing, video surveillance and so on. So deraining becomes more and
more important and it is necessary to propose an effective deraining
algorithm.

Usually, rainy images 𝑂 can be modeled as the linear combination
of rain-free image 𝐵 and rain streaks 𝑅:

𝑂 = 𝐵 + 𝑅 (1)

Eq. (1) is an ill-posed problem that there are numerous solutions of
𝐵, 𝑅 for a given 𝑂, theoretically. In the past decades, in order to get
a better solution, many researchers have proposed some priors about
rain streaks or rainy images to restrain the solution space. Among
these priors, sparse coding [1], low-rank representation [2] and the
Gaussian mixture model [3] are widely used. And some researchers can
also directly regard deraining as an image filtering problem and solve
by resorting to nonlocal mean smoothing [4]. However, since these
models are based on handcrafted low-level features and fixed prior
rain streaks assumptions, they can only cope with raindrops of specific
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shapes, scales and density, and can easily lead to the destruction of
image details which are similar to rain streaks. Hence, a more effective
deraining method, which can process various rain streaks and preserve
the image details, is needed.

Recently, due to its powerful ability of feature representation, con-
volutional neural network (deep learning) have achieved great success
in many computer vision domains, e.g. object detection [5], object
tracking [6], semantic segmentation [7], debluring [8], dehazing [9–
12], super resolution [13–15] and also de-raining [16–22]. These deep
learning based deraining methods have gained a huge improvement
and been demonstrated to be more effective than the traditional meth-
ods. They usually obtain the rain-free images from a designed end-to-
end network by learning the negative residuals or adversarial learn-
ing. Although a lot of work has been done and these deep-learning
based methods work very well, there are still existing several unsolved
shortcomings. Our summary is as follows.

Firstly, spatial contextual information acts as an important role
for single image deraining [23] that rain streaks with different sizes
need different spatial context to process. Several methods [17] only
design forwarded residual networks to learn the rain streaks from
high-frequency detail information, which neglect the spatial contex-
tual information that greatly limits the robustness of the algorithms.
Secondly, although some methods use the sum among multi-stream
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dilation convolutions [18] or multi-kernels with different sizes [22] to
obtain the spatial contextual information, the inner correlation between
features at different levels is ignored. There are no methods in the
literature considering them into deraining.

To resolve these issues, we propose a novel end-to-end network for
single image deraining. Specifically, we propose a multi-level guided
residual block (MLGRB) that makes up our final network. On the one
hand, the MLGRB utilizes several dilation convolutions with exponen-
tial factors to acquire spatial contextual information with different
levels that process rain streaks with different sizes. On the other hand,
we take the inner correlation between different levels into consid-
eration for deraining. The layer with smaller receptive fields guides
the learning of an adjacent layer with larger receptive fields by using
1 × 1 convolution to further process the rain streaks information
better. By guided learning, the network has more stronger rain streaks
representation ability.

Here, our contributions are:

• We develop a multi-level guided residual block and experiments
demonstrate that guided learning can enhance further the rain
streaks representation ability.

• We demonstrate the flexibility of our algorithm in several aspects
by conducting a lot of comparative experiments.

• Quantitative and qualitative experimental evaluations on both
synthetic datasets and real-world datasets show that our proposed
network outperforms the state-of-the-art methods.

2. Related work

Existing deraining methods can be divided into two categories,
including video-based methods and single image-based methods. Com-
pared with single image deraining, video-based methods [24,24–27]
are easier, because they can leverage temporal information by analyz-
ing the difference between adjacent frames. In this paper, we focus on
single image deraining.

As aforementioned, single image based deraining methods can be
divided into two categories, including prior based methods and deep-
learning based methods. In this section, we provide a brief review of
these methods.
Prior Based Methods: Deraining starts from traditional methods. Kang
et al. [28] assume that rain streaks are high frequency structure and
separate the rain streaks by utilizing sparse coding from HOG features
in the high-frequency layer. Luo et al. [1] propose a discriminative
sparse coding framework based on image patches and separate rain
streaks from rain-free background images. Chen et al. [2] believe that
rain streaks layer is low-rank and utilize a generalized low-rank model
to separate rain streaks. Wang et al. [29] design a hierarchical approach
for rain or snow removing in a single color image.
Deep-learning Based Methods: Recently, several deep learning based
deraining methods achieve promising performance. Fu et al. [16,17]
firstly introduce deep-learning methods to single image deraining. They
decompose rainy images into low- and high-frequency parts by the
guided filter and map high-frequency parts to rain streaks by a residual
network, lastly utilize Eq. (1) to obtain the clean image. Yang et al. [18]
propose a deep-learning frame, where they jointly detect and remove
rain streaks using a recurrent contextual convolutional neural network.
Li et al. [21] come up with a non-local enhanced encoder–decoder
network that maps rainy images to clean image via learning the resid-
ual. Fan et al. [30] develop a residual-guide network for single image
deraining. Li et al. [20] propose a recurrent squeeze-and-excitation [31]
context aggregation net for single image deraining. Zhang et al. [22]
present a density-aware guided multi-stream connected network to
jointly estimate rain density and clean images.

3. Proposed method

Fig. 1 illustrates our proposed overall network framework, which
consists of several of our developed multi-level guided residual block
(MLGRB) shown in Fig. 2. The MLGRB acquires more spatial contextual
information by utilizing dilation convolutions with exponential factors.
And the layer with smaller receptive field guides the learning of the
layer with the larger receptive field in order to learn more the rain
streaks information from the former. Moreover, to reduce the model
sizes, we utilize the shared parameters strategy that the parameters
are shared among all MLGRBs. We will demonstrate that the shared
parameters strategy is feasible while the deraining results are still
satisfactory. All MLGRBs are connected by fusion connections that can
boost the information flow along with features from different levels.
We will introduce the proposed network and the developed multi-level
guided residual block detailedly in the next sections.

3.1. Overall network framework

Our proposed network is illustrated in Fig. 1. As rain streaks have
simpler structure than background images, they are easier to learn.
Hence, the network maps rainy images to rain streaks and then obtain
final clean images via Eq. (1). The basic unit of the network is the
multi-level guided residual block (MLGRB) and fusion connections are
utilized to inner-connect the MLGRBs in order to boost the information
flow along with features from different levels.

We describe the overall network mathematically:

𝐹0 = 𝐶𝑜𝑛𝑣(𝑂), (2)

where 𝑂 denotes a rainy image. 𝐶𝑜𝑛𝑣 denotes 3 × 3 convolution. The
operation is to convert image space into feature space.

The converted features are flowed into a series of MLGRBs for
further extracting rain streaks information:

𝐹𝑖 = 𝑀𝐿𝐺𝑅𝐵𝑖(𝐹𝑖−1), 𝑖 = 1, 2,… , 𝑁. (3)

where 𝑀𝐿𝐺𝑅𝐵𝑖 denotes 𝑖th MLGRB and 𝐹𝑖 denotes the correspond-
ing output. 𝑁 denotes the number of MLGRBs. Please note that the
parameters are shared among all MLGRBs.

All the MLGRBs are fused to boost the information flow along with
features from different levels:

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐶𝑜𝑛𝑣1×1(𝐶𝑎𝑡[𝐹𝑁 , 𝐹𝑁−1,… , 𝐹0]), (4)

where 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 denotes the fusion output. 𝐶𝑎𝑡 and 𝐶𝑜𝑛𝑣1×1 denote the
concatenation at the dimension of channel and 1 × 1 convolution
operation, respectively.

Then, the rain streaks 𝑆 can be gained:

𝑆 = 𝐶𝑜𝑛𝑣(𝐹𝑓𝑢𝑠𝑖𝑜𝑛), (5)

Finally, we obtain the final estimated clean image 𝐵 via Eq. (1):

𝐵 = 𝑂 − 𝑆, (6)

3.2. Multi-level guided residual block

As spatial contextual information is important for single image
deraining [23], multi-level dilation convolutions are utilized that can
enlarger receptive fields, while keeping the number of parameters
unchanged. Moreover, in order to learn the rain streaks information
better, we develop guided learning between two adjacent layers that
layer with a smaller receptive field guide the learning of the layer with
the larger receptive field. In the guided learning, both 1 × 1 convolution
and element-wise sum are available. We select 1 × 1 convolution to
guide the learning because element-wise sum does not learn the fusion
that which parts are effective for different layers. However, the 1 × 1
convolution learns the fusion between different layers to boost the
guide learning. More discussion about guided learning can be found in
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Fig. 1. Overall network framework. MLGRB is shown in Fig. 2 The parameters in all MLGRBs are shared.

Fig. 2. Multi-level Guided Residual Block (MLGRB). Take 𝐿 = 4 as an example.

Section 4.4.1. The proposed multi-level guided residual block is shown
in Fig. 2 and we express it mathematically:

Firstly, multi-level dilation convolutions are to acquire more spatial
contextual information:

𝑦𝑟 = 𝐶𝑜𝑛𝑣𝑟(𝑥), 𝑟 = 1, 2,… , 2𝐿−1. (7)

where 𝑥 denotes the input signal and 𝑦𝑟 is the output signal. 𝐶𝑜𝑛𝑣𝑟
denotes the dilation convolution with dilation factor 𝑟. 𝐿 denotes the
number of levels in the multi-level guided residual block.

Then, the guided learning between two adjacent layers is developed
where the layer with smaller receptive field guide the learning of the
layer with larger receptive field:

𝑧𝑟 =

⎧

⎪

⎨

⎪

⎩

𝑦𝑟, 𝑟 = 1

𝐶𝑜𝑛𝑣𝑟(𝐶𝑜𝑛𝑣1×1(𝐶𝑎𝑡[𝑦𝑟∕2, 𝑦𝑟])), 𝑟 = 2,… , 2𝐿−1.
, (8)

Lastly, all the levels are fused and added the original input signal 𝑥
in order to learn the residual:

𝑀𝐿𝐺𝑅𝐵 = 𝐶𝑜𝑛𝑣1×1(𝐶𝑎𝑡[𝑧2𝐿−1 , 𝑧2𝐿−2 ,… , 𝑧1]) + 𝑥. (9)

where 𝑀𝐿𝐺𝑅𝐵 denotes the output of the multi-level guided residual
block.

3.3. Refinement process

We find that there are existing some artifacts in the final estimated
images, see Fig. 8. To solve this problem, we use a simper convolutional
network to refine the final results. The refinement stage firstly encodes
estimated rain-free images to high-level features gradually with the
channels increasing, and then decodes the high-level features to re-
construct the refined rain-free images. Although this encode–decode
designment is simple, it indeed boosts to obtain the better deraining
results, illustrated in Section 4.4.1. The refinement stage is defined as:

𝜎(𝐶𝑜𝑛𝑣(3, 𝐶)) − 𝜎(𝐶𝑜𝑛𝑣(𝐶, 2 × 𝐶)) − 𝜎(𝐶𝑜𝑛𝑣(2 × 𝐶, 4 × 𝐶))−
𝜎(𝐶𝑜𝑛𝑣(4 × 𝐶, 2 × 𝐶)) − 𝐶𝑜𝑛𝑣(2 × 𝐶, 3), where 𝐶𝑜𝑛𝑣(𝑝, 𝑞) denotes the

3 × 3 convolution with 𝑝 input channels and 𝑞 output channels. 𝐶
denotes the number of channels. Here we select LeakyReLU with 𝛼 = 0.2
as 𝜎.

3.4. Loss function

As our network has two stages that one is deraining procedure and
another is refinement process, the loss function also contains two parts.

For the deraining procedure, we use 𝐿2 as error metric:

𝑟𝑎𝑖𝑛 =
1

𝐻𝑊𝐶

𝐻
∑

ℎ=1

𝑊
∑

𝑤=1

𝐶
∑

𝑐=1
‖𝑹̂ℎ,𝑤,𝑐 −𝑹ℎ,𝑤,𝑐‖

2
2, (10)

where 𝐻,𝑊 and 𝐶 denote the height, width and channel number of
a rain streaks, respectively. 𝑹̂ and 𝑹 denote estimated clean image
and background image, respectively. Actually, 𝑹 can be obtained via
Eq. (1): 𝑹 = 𝑶 − 𝑩.

For the refinement process, we use 𝐿2 as error metric:

𝑟𝑒𝑓𝑖𝑛𝑒 =
1

𝐻𝑊𝐶

𝐻
∑

ℎ=1

𝑊
∑

𝑤=1

𝐶
∑

𝑐=1
‖𝑩̂ℎ,𝑤,𝑐 − 𝑩ℎ,𝑤,𝑐‖

2
2, (11)

So the integral loss function is:

 = 𝑟𝑎𝑖𝑛 + 𝑟𝑒𝑓𝑖𝑛𝑒. (12)

4. Experimental results

In this section, we demonstrate the effectiveness of the proposed
method by conducting various experiments on three synthetic datasets
and a real-world dataset. All the results are compared with six state-
of-the-art methods: DSC [1] (ICCV15), LP [3] (CVPR16), DDN [17]
(CVPR17), JORDER [18] (CVPR17), RESCAN [20] (ECCV18), DID [22]
(CVPR18).

4.1. Experiment settings

Synthetic Datasets We conduct deraining experiments on three widely
used synthetic datasets: Rain100L [18], Rain100H [18] and Rain1200
[22]. These three datasets include various rain streaks with different
sizes, shapes and directions. Rain100H and Rain100L have 1800 images
for training and 200 images for testing, respectively. Rain1200 has
12000 images for training and 1200 images for testing. It is ensured
that all the testing datasets have different background images with
training datasets. We select Rain100H as our analysis dataset.

Real-world Datasets: Zhang et al. [19] and Yang et al. [18] also
provide some real-world images, we use these images to evaluate out
the robustness on real-word images.

Quality Measurements: Peak signal to noise ratio (PSNR) [32] and
structure similarity index (SSIM) [33] are widely used in image restora-
tion, which evaluates the quality of restored results with ground-truth.
We also use them as our measurement criteria on synthetic datasets.
As it is difficult to acquire the ground-truth for real-world images, we
only evaluate the performance on the real-world dataset visually.

Training Details: We set 𝑁 = 10, 𝐿 = 4 empirically and the reason
will be given in next sections. The number of channels, i.e. C, is
20 and the non-linear activation is LeakyReLU with 𝛼 = 0.2 for all
convolution layers. We randomly crop 100 × 100 patch pairs from
training image datasets as inputs with a mini-batch size of 10 to train
our network. ADAM [34] is used as the optimization algorithm with an
initialized learning rate of 0.001, and divide it by 10 at 240 K and 320 K
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Table 1
Quantitative experiments evaluated on three synthetic datasets. The best and the second best results are boldfaced and underlined, respectively.
Dataset DSC [1] LP [3] DDN [17] JORDER [18] RESCAN [20] DID [22] Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Rain100H 15.66 0.42 14.26 0.54 22.26 0.69 23.45 0.74 25.92 0.84 26.12 0.83 27.52 0.86
Rain100L 24.16 0.87 29.11 0.88 34.85 0.95 36.11 0.97 36.12 0.97 36.14 0.96 36.97 0.98
Rain1200 21.44 0.79 22.46 0.80 30.95 0.86 29.75 0.87 32.35 0.89 29.65 0.90 32.36 0.91

iterations, and terminate training after 400 K iterations. We use PyTorch
to perform all experiments on a NVIDIA GTX 1080Ti GPU. The network
is trained end-to-end. As our entire model is fully convolutional, the
testing process only takes 0.014 s when handling a test image with
512 × 512 pixels on a PC with a GTX 1080Ti GPU.

4.2. Results on synthetic datasets

Quantitative comparisons between the proposed method with six
state-of-the-art deraining methods on three synthetic datasets are
shown in Table 1. There are two prior based methods, including
DSC [1] and LP [3], and four deep-learning based methods, including
DDN [17], JORDER [18], RESCAN [20] and DID [22].

As shown in Table 1, compared with prior based methods, there
has been a huge improvement in our results. For deep-learning based
methods, the proposed method also obtains the highest evaluative
criteria on three used widely datasets.

Further, we provide several visual examples to compare. Firstly, we
compare prior based methods in Fig. 3. It can be observed that the
results of prior based methods, DSC [1] and LP [3], are unacceptable,
while our results are clearest and cleanest. Secondly, we compare deep
learning based methods in Fig. 4. We can see that the results of deep
learning based methods always exist some remaining rain streaks or
artifacts. However, our results obtain the best performance that is the
clearest and cleanest.

4.3. Results on real-world datasets

To further verify the effectiveness of the proposed method, we
provide several real-world examples. Firstly, we provide some real-
world examples compared with prior based methods [1,3], shown in
Fig. 5. It is obvious that our method gains the best performance. While
the other results, shown in Fig. 5(b) and (c), have a large amount of
residual rain streaks. Then, we provide several examples compared with
deep-learning based methods [17,18,20,22]. For the first two examples,
our results in Fig. 6(f) obtain clearer texture information in the masked
boxes and cleaner from the global perspectives. For the latter two
examples, our results in Fig. 6(f) gain the best performance and have
fewer artifacts, while the other results remain a lot of rain streaks.
So our method obtains the best performance in provided real-world
examples. We also present more of our deraining results in real-world
dataset in Fig. 7.

Lastly, we conduct a user study on real-world data. There are 84
real-world images from the previously released dataset [18] and [19]
and by searching ‘rain’ in Google Images. Based on the output results of
DDN [17], JORDER [18], RESCAN [20] and DID [22] on these 84 real
images, we invite 10 people to select the one with the best deraining
results. Results are shown in Table 2 and we can see that our deraining
results obtain the best reputation in the number of voting and selecting
images. It can well demonstrate our superiority over other methods on
real images.

4.4. Internal analysis

In this section, we give a number of internal analysis of our pro-
posed network. It mainly contains following five parts: ablation study
on different components of our proposed network, the effect on differ-
ent levels, the effect on the number of MLGRBs, the effect on model
sizes and the effect on whether the parameters are shared.

Table 2
User study on real-world data. ‘Selected’ represents the number of most voted
selection.

Meassure Not sure DDN [17] JORDER [18] RESCAN [20] DID [22] Ours

Voted 157 111 104 128 147 193
Selected 16 7 6 11 17 27

4.4.1. Ablation study
Firstly, we discuss the effectiveness of our proposed each com-

ponent, including, fusion connections, dilation, guided learning and
refinement process. Their abbreviation is provided as follows and the
results are shown in Table 3. Symmetry skip connections are usually
utilized in many low-level visions, which transform low-level features
to high-level features in order to enable the computation of long-range
spatial dependencies as well as efficient usage of the feature activation
of proceeding layers. However, our proposed fusion connections are to
cascade all layers to fuse features at every level. So it is meaningful to
discuss these connection styles. 𝑅1 and 𝑅7 denote symmetry skip con-
nections and our proposed fusion connections, respectively. We can see
that our proposed fusion connections are more effective that the PSNR
is improved by 0.04. 𝑅2, 𝑅3 and 𝑅4 denote whether having dilation
convolutions or guided learning. 𝑅7 denotes the proposed network with
dilation convolution and guided learning. It can be observed that our
used guided learning and dilation convolution improve the deraining
results. Compared without dilation convolution and guided learning,
the proposed network, i.e. 𝑅7, improves the PSNR and SSIM by 0.13 dB
and 2%, respectively. The promotion is obvious and also illustrates the
effectiveness of our proposed two components. Moreover, the feature
maps at the first MLGRB of 𝑅2, 𝑅3 and 𝑅4 are visualized in Fig. 9.
The last row denotes our final network and we can see that it learns
rain streaks information better and the background and rain streaks
information is also more vivid. This also illustrates that the dilation
convolution and guided learning are useful for our deraining results.
Moreover, we discuss the two forms of guided learning in MLGRB:
element-wise sum (𝑅5) and 1 × 1 convolution fusion (𝑅7). Although
the element-wise sum also can guide the learning from the layer with
a smaller receptive field to the layer with the larger receptive field, it
does not learn the fusion that which parts are effective for different
layers. However, the 1 × 1 convolution learns the fusion between
different layers to boost the guided learning. The experimental results
also verify our design scheme in 𝑅5 and 𝑅7. 𝑅6 and 𝑅7 compare the
effect whether having refinement process. The comparison shows that
the refinement is indeed effective and the PSNR and SSIM are improved
by 0.34 dB and 2%, respectively. From the above, our proposed each
component is effective and boost the deraining results better.

• 𝑅1 ∶ The proposed method using symmetry skip connections.
• 𝑅2 ∶ The proposed method without dilation convolutions and

guide learning.
• 𝑅3 ∶ The proposed method without guide learning.
• 𝑅4 ∶ The proposed method without dilation convolutions.
• 𝑅5 ∶ Replacing the 1 × 1 convolution with element-wise sum in

MLGRB.
• 𝑅6 ∶ The proposed method without refinement process.
• 𝑅7 ∶ Our proposed network with dilation convolutions, guide

learning, refinement process and fusion connections.
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Fig. 3. Several examples in synthetic datasets compared with priors based deraining methods. It is obvious that our method is much better than other methods.

Table 3
Ablation study on different components of our proposed network. The

√

symbol
denotes that the corresponding component is adopted.

Experiments 𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝑅7

Symmetry skip connections
√

Fusion connections
√ √ √ √ √ √

Dilation convolution
√ √ √ √ √

Guided learning
√ √ √ √ √

Element-wise sum
√

Refinement
√ √ √ √ √ √

PSNR 27.48 27.39 27.11 27.01 26.91 27.18 27.52

SSIM 0.86 0.84 0.85 0.85 0.85 0.84 0.86

Table 4
The effect of levels. L denotes the number of levels.

Metric L = 2 L = 3 L = 4 L = 5 L = 6

PSNR 26.44 27.12 27.52 27.48 28.26
SSIM 0.84 0.85 0.86 0.86 0.86

Furthermore, we provide one visual example on ablation study in Fig. 8.
The result of proposed network shown in Fig. 8(g) gains the highest
PSNR and SSIM. And the other results have either artifacts or remaining
rain streaks.

4.4.2. The effect on levels
We discuss the effect on levels in the section and the results are

illustrated in Table 4. It can be observed that when 𝐿 less than 4, the
PSNR is increasing as the 𝐿 becomes big and the value of PSNR becomes
small when 𝐿 is more than 4. The PSNR is the highest when 𝐿 = 4. So
we select 𝐿 = 4 as our network settings.

4.4.3. The effect on the number of MLGRBs
We further analyze the effect on the number of MLGRBs and the

curves of PSNR and SSIM are illustrated in Fig. 10(a) and (b), respec-
tively. We can see that the results are better when 𝑁 = 10, and the
SSIM declines when 𝑁 increases to 12. And the PSNR and SSIM are
increasing as the 𝑁 becomes large when 𝑁 is less than 10. Considering
the results are good enough and outperform all state-of-the-art methods
when 𝑁 = 10, so we set 𝑁 = 10 as our network settings.

Table 5
Results on model sizes. C denotes the number of channels.

Metric C = 12 C = 16 C = 20 C = 24 C = 28

PSNR 25.59 27.21 27.52 27.82 28.19
SSIM 0.84 0.85 0.86 0.87 0.88
Parameters 37,026 65,110 101,066 144,894 196,594

4.4.4. The effect on model sizes
We also discuss the effect on model sizes. We believe a good model

should be flexible that small model sizes also have a good derain-
ing performance and the results should become better with model
sizes increasing. For this purpose, we carry out several experiments
on different model sizes. We change model sizes by increasing or
decreasing the number of channels. The results are shown in Table 5
and corresponding curves of PSNR and SSIM are illustrated in Fig. 11.
We can observe that the results become better with the model sizes
increasing. When the model sizes are small, i.e., 𝐶 = 12, the results are
comparable with other state-of-the-art methods and even outperform
most methods by combining with Table 1. Moreover, the results are
far more than all state-of-the-art methods when 𝐶 = 28 and the number
of parameters only has 196,594. We also provide a visual example as
a comparison in Fig. 12. It is obvious that the deraining performance
gets better with the model sizes increasing.

4.4.5. The effect on whether parameters are shared
At last, we discuss the effect on whether parameters are shared. To

reduce the model sizes, we set the parameters to be shared in every
MLGRBs. It is meaningful to analyze the change when the parameters
are independent. For this purpose, we conduct the experiments when
the parameters are independent and the results are shown in Table 6.
As we can see that the results have a big improvement when the
parameters are independent and the parameters are three times as
big as the shared condition. Our model is flexible that the results are
better and the parameters are less when the parameter are shared
and the results are far better to the other state-of-the-art methods
then the parameters are independent. So we conclude that the shared
parameters strategy is also feasible. Furthermore, we present a visual
example to compare the two conditions in Fig. 13. We can see that the
deraining result has a huge improvement compared with the shared
condition.
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Fig. 4. Several examples in synthetic datasets compared with deep-learning based deraining methods. Our results shown in (f) are the best than others. And the results of
JORDER [18] always restore to be darker.

Fig. 5. Several examples in real-world datasets compared with priors based deraining methods. It is obvious that our method is much better than other methods.
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Fig. 6. Several examples in real-world datasets compared with deep-learning based deraining methods. Our results shown in (f) have less artifacts and obtain clearer texture
information than others.

Fig. 7. More our deraining results in real-world dataset.

5. Conclusion

In this paper, we propose a novel end-to-end deep learning based
deraining method. The method utilizes dilation convolutions to ob-
tain more spatial contextual information to capture rain streaks with
different sizes. The guided learning is proposed that the layer with a
smaller receptive field is to guide the layer with the larger receptive

field in order to learn rain streaks better. Experiments illustrate that the
dilation convolution and guide learning improves the deraining perfor-
mance. Quantitative and qualitative experimental results demonstrate
the superiority of the proposed method compared with several state-
of-the-art deraining methods on Rain100H, Rain100L and Rain1200
datasets.
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Fig. 8. An example on ablation study.

Fig. 9. The visualization of feature maps in the first MLGRB on different networks settings. From top to bottom, the proposed method without dilation convolution and guide
learning, without dilation convolution, without guide learning and with dilation convolution and guide learning, respectively.

Fig. 10. The curves of the number of MLGRBs.

Fig. 11. The curves of model sizes.
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Fig. 12. An example on model sizes.

Fig. 13. An example on whether parameters are shared.

Table 6
Results on whether parameters are shared.

Metric Shared No-shared

PSNR 27.52 28.91
SSIM 0.86 0.89
Parameters 101,066 345,846
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