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Abstract
Rain streaks usually give rise to visual degradation and cause many computer vision algorithms to fail. So it is necessary
to develop an effective deraining algorithm as preprocess of high-level vision tasks. In this paper, we propose a novel deep
learning based deraining method. Specifically, the multi-scale kernels and feature maps are both important for single image
deraining. However, the previous works ignore the two multi-scale information or only consider the multi-scale kernels
information. Instead, our method learns multi-scale information both from the perspectives of kernels and feature maps,
respectively, by designing spatial contextual information aggregation module and pyramid network module. The former
module can capture the rain streaks with different sizes and the latter module can extract rain streaks from different scales
further. Moreover, we also employ squeeze-and-excitation and skip connections to enhance the correlation between channels
and transmit the information from low-level to high-level, respectively. The experimental results show that the proposed
method achieves significant improvements over the recent state-of-the-art methods in Rain100H, Rain100L, Rain1200 and
Rain1400 datasets.

Keywords Single image deraining · Pyramid network · Spatial contextual information aggregation · Residual learning

1 Introduction

Recently, the task of deraining has received much attention
due to the importance in the preprocessing of artificial intel-
ligence applications, e.g. object detection, object tracking,
semantic segmentation, and other high-level visions. So it
is meaningful to explore an effective deraining method. In
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this paper, a deep learning-based deraining algorithm is
proposed.

The methods of deraining can be divided roughly into
two categories: video based methods and single image based
methods. The video based methods [1, 2, 7, 21, 31] can
analyze the difference between frames, thus they are easier
than the single image deraining methods. In this paper, we
explore the study on single image deraining method.

The problem of single image deraining has been studied
intensively for long years. Most of the methods can be
formalized as below:

O = B + R (1)

where O, B and R denote rainy image, clear image and
rainy streaks, respectively. As only the rainy image is
available, this is a highly ill-posed problem. To make
this problem well solve, numerous algorithms use prior
knowledge about rainy streaks and clear images, e.g. low-
rank prior [3], sparse representation [18], Gaussian mixture
model [16], to constrain the solution space. Although these
algorithms achieve the promising performance, the prior
knowledge used in these algorithms does not hold for some
cases, as shown in Fig. 1.

In the past few decades, a large number of single image
deraining methods have been proposed. Since 2012, due to
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Fig. 1 An example in real-world datasets compared with priors based deraining methods. It can be observed that the prior based methods fail to
restore rain-free image. Our method generates better deraining result

the powerful feature representation capability of the Con-
volutional Neural Networks (CNNs), deep learning has
been widely employed in the image domain, significantly
improving the performance of image classification, object
detection [17], pose estimation [4], semantic segmenta-
tion [20], and also the deraining methods [5, 6, 14, 15,
22–25, 29]. Although the deep learning based single image
deraining has achieved great success, they still suffer from
some limitations. We summarize as follows:

– On the one hand, the spatial contextual information [9]
that can be learned by multi-scale kernels can be
utilized to remove the rain streaks with different
sizes from rainy images. But the methods [5, 6, 30]
employ either a residual network or a symmetric
encoder-decoder structure with adversarial learning,
neglecting the spatial contextual information. Although
the methods [27, 29] design the element-wise sum
between multi-stream dilation convolutions or use
several convolution kernels with different sizes that
consider the multi-scale kernels information into
deraining, they ignore the following limitation: multi-
scale feature maps.

– On the other hand, multi-scale feature maps which have
been proved to be effective in many computer vision
tasks [4, 17, 19, 28] are neglected in some deraining
methods [5, 6, 14, 15, 27, 29, 30], leading to poor
deraining performance.

– Finally, the semantic correlation between channels,
which can make the channels closely related, is
important in deep-learning based tasks, but it is not
considered into the deraining methods [5, 6, 27, 29, 30]
that lose some important semantic information.

To overcome these limitations, in this paper, we propose
a novel end-to-end deep-learning based deraining method,
which is based on the pyramid network with spatial
contextual information aggregation. The proposed network
includes two types of modules: (a) spatial contextual
information aggregation module and (b) pyramid network
module. The spatial contextual information aggregation

module consists of multiple dilation convolutions which can
obtain more spatial contextual information and the multi-
scale features from the perspective of kernels. Different
from the element-wise sum among multi-stream dilation
convolutions [27], we employ the 1 × 1 convolution to fuse
the features of rain steaks with different sizes extracted by
the multi-scale kernels. To obtain the multi-scale features
from the perspective of feature maps, we introduce a
pyramid network module in the proposed method. The
pyramid network module can acquire the multi-scale feature
maps and fuse these features to maintain the primary
information of rain streaks. Finally, we embed squeeze-and-
excitation [8] into these two types of modules to recalibrate
the feature response of each feature map adaptively that can
capture more semantic correlation between channels.

In summary, this paper makes the following contribu-
tions:

– A spatial contextual information aggregation module is
proposed to learn the rain streaks with different sizes,
which can acquire the multi-scale features from the
perspective of kernels.

– We consider the pyramid network module into our
network to obtain and fuse the multi-scale features of
rain streaks from the perspective of the feature maps.

– As we know, this is the first paper that considers the two
multi-scale information, i.e. kernels and feature maps,
into deraining simultaneously and their effectiveness
has been verified.

– Quantitative and qualitative experimental evaluations
on both synthetic and real-world datasets have demon-
strated the superiority of our proposed method, which
achieves significant improvements over the state-of-
the-art methods.

2 Related work

In this section, we present a review of the recent related
works about deraining methods and pyramid network.
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2.1 Single image deraining

As aforementioned, the single image deraining methods can
be grouped into two categories, prior based methods, and
deep-learning based methods.

Prior based methods The research of deraining starts from
prior based method. The most widely known is image
decomposition [11], non-local filter [12], sparse codes [18],
low-rank model [3], and Gaussian mixture model [16].
Kang et al. [11] propose a single-image-based rain removal
framework via properly formulating rain removal as an
image decomposition problem based on morphological
component analysis, where they decompose an image
into the low- and high-frequency parts using a bilateral
filter. The high-frequency part is then decomposed into a
rain component and a nonrain component by performing
dictionary learning and sparse coding. Kim et al. [12] first
detect rain streak regions by analyzing the rotation angle and
the aspect ratio of the elliptical kernel at each pixel location
and then perform the nonlocal means filtering on the
detected rain streak regions by selecting nonlocal neighbor
pixels and their weights adaptively. Luo et al. [18] propose
a dictionary learning based algorithm for single image
deraining, which is to sparsely approximate the patches of
two layers by very high discriminative codes over a learned
dictionary with strong mutual exclusivity property and the
discriminative sparse codes lead to accurate separation of
two layers from their non-linear composite. Chen et al. [3]
think first rain streaks usually reveal similar and repeated
patterns on imaging scene, then design a low-rank model
from a matrix to tensor structure to capture the correlated
rain streaks and utilize the model to remove rain streaks
from image in a unified way. Li et al. [16] use simple patch-
based priors for both the background and rain layers and
these priors are based on Gaussian mixture models and can
accommodate multiple orientations and scales of the rain
streaks. Prior based methods dominated the deraining task
before 2017, however, the execution speed and deraining
performance are unsatisfactory.

Deep-learning based methods From 2017, several deep
learning based deraining methods achieve great success
on speed and deraining results. They mostly either learn
the residual about rain streaks or first detect rain streak
then remove them or use the density of rain streaks to
guide the learning of network. And these methods led to
our subsequent research. Fu et al. [5, 6] firstly introduce
deep-learning methods to single image deraining. They
decompose rainy images O into low- and high-frequency
parts and map high-frequency parts to rain streaks images
R by a deep residual network, lastly utilize (1) to obtain a

clean image B. Yang et al. [27] develop a multi-task deep
learning architecture that learns the binary rain streak map,
the appearance of rain streaks, and the clean background
and based on the designment, they propose a recurrent
rain detection and removal network that removes rain
streaks and clears up the rain accumulation iteratively and
progressively. Li et al. [14] propose a non-locally enhanced
encoder-decoder network framework, which utilizes non-
locally enhanced dense blocks that are designed to not only
fully exploit hierarchical features from all the convolutional
layers but also well capture the long-distance dependencies
and structural information. Li et al. [15] propose a novel
deep network architecture based on deep convolutional
and recurrent neural networks for single image deraining,
where they utilize squeeze-and-excitation [8] to allot each
learnable value to rain streaks with different sizes. Zhang
et al. [29] present a novel density-aware multi-stream
densely connected convolutional neural network-based
algorithm for joint rain density estimation and deraining that
they enable the network itself to automatically determine
the rain-density information and then efficiently remove
the corresponding rain-streaks guided by the estimated rain
density label.

2.2 Pyramid network

Recently, the conventional spatial pyramid approaches
have been combined successfully with neural network
architectures to deal with various vision tasks. There are
several networks based on the spatial pyramid. Ranjan
et al. [19] develop a spatial pyramid network to estimate
optical flow, which estimates large motions in a coarse-
to-fine approach by warping one image of a pair at each
pyramid level by the current flow estimate and computing an
update to the flow. Lin et al. [17] propose a feature pyramid
network for object detection, where they exploit the inherent
multi-scale, pyramidal hierarchy of deep convolutional
networks to construct feature pyramids with marginal extra
cost. A top-down architecture with lateral connections is
developed for building high-level semantic feature maps
at all scales. Chen et al. [4] come up with a cascaded
pyramid network for multi-person pose estimation which
can successfully localize the simple keypoints like eyes
and hands but may fail to precisely recognize the occluded
or invisible keypoints. Zhang et al. [28] present a densely
connected pyramid network for single image dehazing.

A great deal of work has been done to verify that the
multi-scale information is effective for various vision tasks
and it is necessary to introduce the multi-scale information
to deraining problem. So in this paper, we utilize a pyramid
network to obtain the multi-scale information from the
perspective of feature maps.

Single image deraining via deep pyramid network... 1439



Fig. 2 Overall Network Framework. The SCIAM and SERB are shown in Figs. 3 and 4, respectively

3 Proposedmethod

The proposed method shown in Fig. 2 includes two types
of modules: (a) spatial contextual information aggregation
module (SCIAM) and (b) pyramid network module (PNM).
The SCIAM shown in Fig. 3 consists of several dilation
convolutions and one squeeze-and-excitation operation. The
basic component of PNM, as shown in Fig. 4, is made up of
the improved residual block that is a squeeze-and-excitation
enhancing residual block. Skip connections are utilized to
enable the computation of long-range spatial dependencies
as well as efficient usage of the feature activation of
proceeding layers.

3.1 Overall framework network

Compared with the complex background image informa-
tion, rain streaks are easier to learn. So our network is

Fig. 3 The proposed spatial contextual information aggregation
module (SCIAM)

to learn the nonlinear mapping from rainy images to rain
streaks, then obtains the final clear background image
via (1). Spatial contextual information aggregation mod-
ule can acquire the spatial information and the correlation
between channels, where multi-scale information from the
perspective of kernels is obtained using several dilation
convolutions with different factors. And the pyramid net-
work module can gain multi-scale information from the
perspective of feature maps. The proposed network can be
roughly divided into three stages: Shallow layer process-
ing stage, Pyramid network module processing stage and
Reconstructing rain streaks stage. The shallow layer pro-
cessing stage and reconstructing rain streaks stage are based
on the spatial contextual information aggregation module.
And the pyramid network module processing stage is based
on the pyramid network.

Mathematically, we describe the three stages of the
network as follows:

Shallow layer processing stage Firstly, the rainy image is
input into the shallow layer to convert image space to
shallow feature space:

F0 = Conv3×3(O) (2)

where F0 is the shallow feature layer. Conv3×3 is a 3 × 3
convolution operation.

Then two SCIAMs following the shallow feature space
are designed to capture more spatial contextual information
of the rain streaks with different sizes by several dilation
convolutions with different factors:

Fi = SCIAMi(Fi−1), i = 1, 2. (3)

where SCIAMi denotes the i-th operation of SCIAM that
will be introduced in Section 3.2 detailedly.
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Pyramid networkmodule (PNM) processing stage we intro-
duce the multi-scale feature maps into our single image
deraining method. Firstly, pooling operation with different
sizes of kernel and stride is adopted to acquire multi-scale
feature maps information:

Pi = Poolingi(F2), i = 1, 2, · · · , 2j−1. (4)

where Poolingi denotes the pooling operation with the
kernel i × i and stride i × i. Pi denotes the obtained original
multi-scale features. j is the level of the pyramid network.

Then the original multi-scale features are fed to pyramid
network module to extract the deeper rain streaks further:

Hi = PNMi(Pi), i = 1, 2, · · · , 2j−1. (5)

where Hi denotes the output of pyramid network module of
i-th level. PNMi denotes the pyramid network module in
i-th level, where there are three basic blocks in every level.

Lastly, we fuse all the outputs of the pyramid network
module by 1 × 1 convolution to learn further the primary
rain streaks:

F3 = Conv1×1(Cat[H1, H2, · · · , H2j−1]), (6)

where Cat and Conv1×1 denote concatenation at the
dimension of channel and 1 × 1 operation, respectively. In
this paper, we set j = 4 empirically.

Reconstructing rain streaks stage To reconstruct rain
streaks, we employ two SCIAMs to process them, while
to enable the computation of long-range spatial dependen-
cies as well as efficient usage of the feature activation of
proceeding layers, skip connections are utilized:

Fi =
⎧
⎨

⎩

SCIAM(Conv1×1(Cat[F6−i , Fi−1])), i = 4, 5.

Conv3×3(Conv1×1(Cat[F6−i , Fi−1])) i = 6.
,

(7)

The reconstructed rain streaks R̂ can be obtained:

R̂ = Conv3×3(F6), (8)

Fig. 4 The basic unit of PNM: Squeeze-and-Excitation Residual Block
(SERB)

The final estimated rain-free images B̂ are gained via (1):

B̂ = O − R̂, (9)

3.2 Spatial contextual information aggregation
module (SCIAM)

Spatial contextual information and correlation between
channels are important for single image deraining [9]. Con-
sidering the above two key points, we design a spatial
contextual information aggregation module, as shown in
Fig. 3. It utilizes adequately the spatial contextual infor-
mation and correlation between channels by using several
dilation convolutions and squeeze-and-excitation operation,
respectively, to learn better rain streaks representation infor-
mation.

First, we utilize several dilation convolutions with
different dilation factors to produce spatial contextual
information:

yr = Convr(x), r = 1, 3, 5. (10)

where Convr denotes dilation convolution with factor r . x

and yr denote the input signal and the corresponding output,
respectively.

Then all the spatial contextual information are fused in
pairs by 1×1 convolution to further learn better rain streaks
structures:

zs,t = Conv1×1(Cat[ys, yt ]), s, t = 1, 3, 5. (11)

Finally, we utilize squeeze-and-excitation (SE) to adaptively
recalibrate the feature response of each feature map to
acquire the correlation between channels:

z = SE(Conv1×1(Cat[z1,3, z3,5])), (12)

where z is the final output of SCIAM.

3.3 Pyramid networkmodule (PNM)

Although the SCIAM can obtain the multi-scale information
from the perspective of kernels, the multi-scale features
from the perspective of feature maps are ignored, which
are also very important for single image deraining. To
address this issue, multi pooling operations are utilized, then
the information is processed by several of our proposed
residual blocks with semantic correlation. The improved
residual block is a normal residual block with squeeze-
and-excitation enhancing, as shown in Fig. 4. We denote
the improved residual block operation as SERB blew.
Moreover, the multi-scale feature maps are obtained via
pyramid network by using several pooling operations and
the overall processing procedure is expressed by (4, 5 and
6).

We describe these processes in mathematical detail as
follows:
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The features at different levels are forward to several
SERBs, respectively:

hl
i = SERBl(h

l−1
i ), i = 1, 2, · · · , 2j−1.l = 1, 2, 3. (13)

where hl
i denotes the output of the l − th SERB at j − th

pyramid level. The h0i and h3i are the Pi and Hi in the (5),
respectively.

3.4 Loss function

We use MSE as the loss function:

L = 1

HWC

H∑

t=1

W∑

s=1

C∑

k=1

‖B̂ t,s,k − B t,s,k‖22. (14)

where H, W, C denotes the height, width and channel num-
ber of a rain-free image, respectively. B̂ and B denote the
estimated clean image and background image, respectively.
Actually, this loss is equivalent to 1

HWC

∑H
t=1

∑W
s=1

∑C
k=1

‖R̂t,s,k − Rt,s,k‖22 according to the rainy image decom-
position (1). R̂ and R denote estimated rain streaks and
corresponding groundtruth, respectively.

4 Experiments

In this section, we demonstrate the effectiveness of the
proposed method by conducting extensive experiments on
four synthetic datasets and a real-world dataset. We compare
our results with six state-of-the-art methods, including two
prior based methods, DSC [18] (ICCV15) and LP [16]
(CVPR16), four deep-learning based methods, DDN [6]
(CVPR17), JORDER [27] (CVPR17), RESCAN [15]
(ECCV18) and DID [29] (CVPR18).

4.1 Datasets andmeasurements

Synthetic datasets We perform deraining experiments on
four widely used synthetic datasets: Rain100L [27],
Rain100H [27], Rain1200 [29] and Rain1400 [6]. They
have various rain streaks, including different sizes, shapes
and directions. Rain100H and Rain100L have 1800 images
for training and 200 images for testing, respectively.

Rain1200 has 12000 images for training and 1200 images
for testing. Rain1400 has 12600 images for training and
1400 images for testing. All testing datasets are assured to
have different background images with training datasets. We
select Rain100H as our analysis dataset.

Measurements Peak signal to noise ratio (PSNR) [10] and
structure similarity index (SSIM) [26] are widely used to
evaluate the quality of restored results with ground truth.
PSNR is based on the error between corresponding pixels,
i.e. estimated deraining result and ground truth. The higher
its value, the better the restored image will be. SSIM is a
measure of similarity between two images. The closer to 1,
the more similar the two images are. We use them as our
measurement criteria on synthetic datasets. As it is difficult
to acquire the ground truth for real-world images, we only
evaluate the performance on the real-world images visually.

4.2 Implementing details

We randomly crop 128 × 128 patch pairs from training
image datasets as inputs with a mini-batch size of 12 to train
our network. The ADAM [13] is used as the optimization
algorithm with an initialized learning rate of 0.001, and the
rate will be divided by 10 at 240K and 320K iterations,
and model terminates training after 400K iterations. The
number of channels is 48 and the non-linear activation is
LeakyReLU with α = 0.2 for all convolution layers. We use
PyTorch to perform all experiments on an NVIDIA GTX
1080Ti GPU. As our entire model is fully convolutional, the
testing process only takes 0.05 seconds when handling a test
image with 512 × 512 pixels on a PC with a GTX 1080Ti
GPU.

4.3 Results on synthetic datasets

The comparison of our method with six state-of-the-
art methods on four datasets is illustrated in Table 1.
It can be observed that our method is far superior to
others. Especially, the proposed method achieves significant
improvements on Rain100H datasets.

Table 1 Quantitative experiments evaluated on four synthetic datasets

DSC [18] LP [16] DDN [6] JORDER [27] RESCAN [15] DID [29] Ours

Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Rain100H 15.66 0.42 14.26 0.54 22.26 0.69 23.45 0.74 25.92 0.84 26.12 0.83 28.24 0.89

Rain100L 24.16 0.87 29.11 0.88 34.85 0.95 36.11 0.97 36.12 0.97 36.14 0.96 38.20 0.98

Rain1200 21.44 0.79 22.46 0.80 30.95 0.86 29.75 0.87 32.35 0.89 29.65 0.90 33.16 0.92

Rain1400 22.03 0.80 26.53 0.83 29.99 0.89 28.90 0.90 29.84 0.90 31.18 0.91 31.45 0.92

The best results are boldfaced
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Fig. 5 An example in synthetic datasets compared with priors based deraining methods. The results of DSC [18] and LP [16] are unacceptable.
The proposed method generates a much clear image

Furthermore, we give several visual examples. The
performance of the prior based methods on synthetic
example is shown in Fig. 5. It is obvious that the results of
prior based methods are unacceptable, while our restored
result is clean and clear. We also show some results on deep
learning based methods in Fig. 6. We can see that other
methods remain some rain streaks and have artifacts, while
our restored results obtain the best performance.

4.4 Results on real-world datasets

To verify the robustness in real-world images, we also give
some examples on real-world datasets. The comparison of
our method with the prior based methods, DSC [18] and
LP [16], is showed in Fig. 7. The performances on prior
based methods are unacceptable and there are a mass of
remaining rain streaks. Our result shown in Fig. 7d is better

and removes a good deal of rain streaks. We also compare
our method with other deep learning based methods in
Fig. 8. For the first example, our result removes all the
rain streaks and the results of JORDER [27], DDN [6]
and DID [29] remain some rain streaks. Furthermore, the
results of JORDER [27], DDN [6] and RESCAN [15] lose
the details in the masked boxes, while our result preserves
better details. For the other examples, we obtain better
performance, while the others have residual rain streaks.
We provide more deraining results in real-world datasets
in Fig. 9.

4.5 Ablation study

As our proposed method is based on several basic
components, including dilation convolution, squeeze-and-
excitation, pyramid network and skip connections, where

Fig. 6 Several examples in synthetic datasets compared with deep-learning based deraining methods. The other methods remain some rain streaks
or have macroscopic artifacts. Our method obtains the best performance

Single image deraining via deep pyramid network... 1443



Fig. 7 An example in real-world datasets compared with priors based deraining methods. The results of prior based methods are unacceptable,
while the proposed method generates a much clear image

Fig. 8 There examples in real-world datasets compared with deep-
learning based deraining methods. For the first example, our result
remove all the rain streaks and the results of JORDER [27], DDN [6]

and DID [29] remain some rain streaks. Furthermore, the results of
JORDER [27], DDN [6] and RESCAN [15] lose the details in the
masked boxes, while our result preserves the better details

Fig. 9 More our deraining results

C. W. et al.1444



Table 2 Ablation study on different components of our proposed
method

Experiments R1 R2 R3 R4 R5 R6

DC
√ √ √ √

SE
√ √ √ √

Pyramid
√ √ √ √ √

Skip
√ √ √ √ √

PSNR 28.01 28.20 27.79 27.37 28.02 28.24

SSIM 0.88 0.88 0.87 0.86 0.88 0.89

The
√

symbol denotes that the corresponding component is adopted

The best results are boldfaced

dilation convolutions denote the multi-scale information
from the perspective of kernels and pyramid network
represents the multi-scale information from the perspective
of feature maps, it is meaningful to discuss their effects. We
denote the abbreviations as below:

– R1 : Our proposed network without dilation convolu-
tions and squeeze-and-excitation.

– R2 : Our proposed network without dilation convolu-
tions.

– R3 : Our proposed network without squeeze-and-
excitation.

– R4 : Our proposed network without pyramid network.
– R5 : Our proposed network without skip connections.
– R6 : Our proposed network with dilation convolutions,

squeeze-and-excitation, pyramid network and skip
connections. We provide more deraining results in real-
world datasets in Fig. 9.

From the results in Table 2, it can be observed that
our method benefit from each component. Specially, R4,
i.e. the method without pyramid network has the worse
performance, which proves the importance of multi-scale
information from the perspective of feature maps playing
important an role in our method. In like manner, the multi-
scale information from the perspective of kernel, i.e. R2,
also plays an important role in our method, i.e. R6.

Furthermore, we provide a visual example as comparison
of the effectiveness on every component in Fig. 10. We can
observe that our result had the highest PSNR and SSIM.
We provide more deraining results in real-world datasets in
Fig. 9.

5 Conclusion

In this paper, we propose a novel end-to-end deep learning
based deraining method. The proposed method considers
two multi-scale perspectives: multi-scale kernels and multi-
scale feature maps by designing the spatial contextual
information aggregation module and pyramid network
module, respectively. The multi-scale kernels can acquire
more spatial contextual information by several dilation
convolutions with different factors and the multi-scale
feature maps fuse features at different scales by pyramid
network module. Furthermore, the squeeze-and-excitation
and skip connections are adopted, respectively, to learn the
correlation between channels and transmit the information
from low-level to high-level features. The experimental
results shows that our proposed method outperforms the
state-of-the art methods on four widely used datasets:
Rain100H, Rain100L, Rain1200 and Rain1400, while

Fig. 10 An examples in synthetic datasets compared with priors based deraining methods. The proposed method generates a much clear image
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having better performance on real-world dataset, and this
also illustrates that the multi-scale information is important
for single image deraining.

Furthermore, we plan to apply the multi-scale trick
to other low-level visions, e.g. deblurring, dehazing and
denoising.
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