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Abstract— Network embedding (NE) aims to encode the rela-
tions of vertices into a low-dimensional space. After NE, we can
obtain the learned vectors of vertices that preserve the proximity
of network structures for subsequent applications, e.g., vertex
classification and link prediction. In existing NE models, they
usually exploit the skip-gram with a negative sampling method
to optimize their objective functions. Generally, this method
learns the vertex representation only from the local connectivity
of vertices (i.e., neighbors). However, there is a larger scope
of vertex connectivity in real-world scenarios: a vertex may
have multifaceted aspects and should belong to overlapping
communities. Taking a social network as the overlapping exam-
ple, a user may subscribe to the channels of politics, economy,
and sports simultaneously, but the politics share more common
attributes with the economy and less with the sports. In this
article, we propose an adversarial learning approach (ACNE)
for modeling overlapping communities of vertices. Specifically,
we map the association between communities and vertices into
an embedding space. Moreover, we take further research on
enhancing our ACNE with the following two operations. First,
in the initialization stage, we adopt a walking strategy with
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perception to obtain paths containing more possible boundary
vertices to improve overlapping community detection. Then, after
representation learning with ACNE, we use soft community
assignments from a simple classifier as supervision to update
the weights of ACNE. This self-training mechanism referred to
as ACNE-ST can help ACNE to achieve better performance.
Experimental results demonstrate that the proposed methods,
including ACNE and ACNE-ST, can outperform the state-of-
the-art models on the subsequent tasks of vertex classification
and overlapping community detection.

Index Terms— Adversarial learning, network embedding (NE),
overlapping community detection, self-training.

I. INTRODUCTION

IN REAL-WORLD scenarios, graph structures are ubiqui-
tous, e.g., citation networks and social networks. To learn

relations among vertices in a graph, the network embed-
ding (NE) method is proposed. Generally, it aims to map
vertices into a low-dimensional space where similar ones
are assigned to nearby areas [1]. After NE, we can obtain
learned embeddings for subsequent applications, e.g., vertex
classification [2] and link prediction [3]. Up until now, a lot of
works on preserving the proximity structure of networks have
been devoted to NE. For example, starting from DeepWalk [2]
performing truncated random walks to explore network struc-
tures, LINE [4] extends it by adopting the strategies of
breadth-first search (BFS) and depth-first search (DFS). After
that, node2vec [3] takes both these strategies into account and
further designs a biased random walk procedure to explore
diverse neighbors. To sum up, there is a common pattern
for these methods: after searching out neighbors of vertices
with various strategies, they all adopt skip-gram with negative
sampling [5], [6] to learn vertex representations. Specifically,
skip-gram is a language model that learns word embeddings
by maximizing the probability of word co-occurrences (cor-
responding to vertex neighbors in graphs) within a sliding
window. Thus, the purpose of NE aims to make a target vertex
being close to its neighbors and meanwhile being far away
from its negative samples.

Nevertheless, most of the current NE models only consider
the local connectivity of vertices’ neighbors during the learn-
ing while ignoring the global pattern, which is regarded as
communities in complex graphs. In many practical scenarios,
vertices of networks may contain disparate aspects [8], [9],
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Fig. 1. Instance of overlapping communities in one given graph. Here,
we take an online video website as an example from which users are
represented as vertices and edges are denoted as the relations of subscribing
to common video genres (this figure is referred to [7]). The purpose of
embedding learning aims to obtain the embeddings that preserve both the
vertex and community proximities in a low-dimensional space.

i.e., different paths expanding from a vertex to its n-step
neighbors may result from the expression of its aspects (i.e.,
communities). For instance, we provide an example about a
social network of an online video website in Fig. 1, where
users are represented as vertices and edges are denoted as the
relations of subscribing to common video genres. In practice,
a user may simultaneously subscribe to politics, economy, and
sports channels (we call them communities in the following).
The politics community usually shares more users with the
economy and less with sports. As such, if we ignore commu-
nity information in NE, the learned embeddings of users and
their communities may be indistinguishable in the embedding
space. In general, the community structure is an important
pattern of networks, which is expected to benefit both NE and
overlapping community detection.

There are several challenges in overlapped community-
aware NE. The first one is how to determine the vertex
communities. The second is how to transfer the community
assignments of vertices from a discrete space to a continuous
one. The last is how to optimize a loss function to guild
the embeddings of vertices and their assigned communities
being close to each other while being far from irrelevant
communities. In recent years, generative adversarial networks
(GANs) [10] have drawn great attention for their success in
different applications [11]. It is worth mention that GANs
can learn a map of an input from a simple distribution to a
complicated one (i.e., mapping into an embedding space) [12].
There have been some studies on integrating GANs into NE.
For example, GraphGAN [13] is proposed to unify generative
and discriminative models for embedding learning to boost the
performance of NE. Inspired by DeepWalk [2], AIDW [14]
proposes an improved version with a GAN-based regular-
ization method. A-RNE [15] leverages GANs with triplet
ranking loss to generate high-quality negative vertices during
the training. ProGAN [12] uses GANs to discovers ordinary
underlying vertex proximities for benefiting NE. However,
these above models employ standard GANs for generating
vertex samples while ignoring community structures. There-
fore, it still remains to be tackled for incorporating community
information into GANs.

To solve this problem, we introduce an adversarial learning
method (dubbed as ACNE) for NE and overlapping commu-
nity detection. More concretely, both vertices and communities
are represented as learnable embeddings. First, we sample

a community from the walking paths of each vertex. Next,
we need to map the relation of a discrete vertex community
assignment into a continuous vertex–community embedding
space. To achieve this purpose, we exploit a discriminator
to train the embeddings that jointly maximize the predicting
probabilities of the assigned community and the context ver-
tices for a target vertex. Through this fashion, the correlation of
vertex–vertex from local connectivity and vertex–community
from network structure can be uniformly preserved in our
method. After that, to obtain distinguishable embeddings,
we employ a softmax generator for constructing high-quality
negative communities instead of using a uniform sampling
method. As such, the pairs of a given target vertex and its
negative communities with higher probabilities computed in
the discriminator will be promoted to be sampled. Finally,
to evaluate if simultaneously taking vertex connectivity and
community structure into account can actually benefit the
NE performance, we carry out experiments including vertex
classification and overlapping community detection on several
real-world datasets to compare the performance of our meth-
ods with state-of-the-art models.

Moreover, we further study ACNE to improve its perfor-
mance by considering the following two aspects.

1) Though the proposed adversarial learning method can
outperform the baseline models on the aforementioned
tasks, one concern may prevent it from achieving better
performance. Because ACNE leverages random walk
to sample the context of vertices, the generated paths
may fall into local loops: it is very likely for a vertex
walking back to previously visited nodes when moving
to its neighbors uniformly at random [16], [17]. To avoid
the paths being trapped into local communities and
benefit from overlapping community detection, we adopt
a walking strategy with perception to obtain paths con-
taining more possible boundary vertices.

2) Besides, after performing representation learning with
ACNE, we apply soft community assignments from a
simple classifier as supervision to update the weights
of ACNE. The proposed self-training method, referred
to as ACNE-ST, can fine-tune ACNE to learn more
discriminative representations.

The contributions can be summarized as follows.
1) We introduce an adversarial learning method dubbed

as ACNE that can incorporate overlapping community
information into network representation learning.

2) The proposed generator can yield high-quality negative
communities that can help the discriminator learn more
discriminative representations.

3) We employ a walking strategy with perception to ben-
efit overlapping community detection that can generate
paths containing more possible boundary vertices. More-
over, we further introduce a self-training method named
ACNE-ST to achieve better performance results.

4) We empirically evaluate both ACNE and ACNE-ST with
subsequent analysis tasks, including vertex classification
and overlapping community detection. Our experiments
show that the proposed methods can achieve more
superior performance than state-of-the-art models.
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Fig. 2. Overall training process of ACNE.

The rest sections are organized as follows. In Section II,
we firstly present the core idea of our proposed ACNE model
and then demonstrate the self-training enhanced ACNE-ST
model. After that, we present their complexity analysis in
Section III. We analyze experimental results in Section IV and
introduce related work in Section V. Section VI summarizes
our work.

II. PROPOSED MODELS

In this part, we will give the problem formulation and
notations. Then, we will introduce an overview of the ACNE
framework, as shown in Fig. 2, and provide detailed descrip-
tions of its components.

A. Problem Formulation With Notations
In general, we aim to perform overlapping community

detection and NE learning; thus, the problem can be formu-
lated as follows.

1) Network Embedding: A network can be presented as
G = (V , E), where V denotes a set of vertices and E ⊆
V × V is a set of edges. Generally, NE aims to preserve the
network proximity of each vertex v ∈ V in a low-dimensional
embedding, where v ∈ R

d and d � |V | is the embedding
dimension.

2) Community Embedding: We denote the number of
communities as |C|. Because mapping vertex–vertex and
vertex–community relations into the same embedding space
is conducive to integrate the information of local connectivity
and network structure, we also learn a low-dimensional rep-
resentation c ∈ R

d for each community, which has the same
dimension as vertex embeddings. In this way, we can measure
the similarity of communities and vertices by calculating the
inner product of their corresponding embeddings, which will
benefit overlapping community detection.

3) Random Walk: In a given network, the random walk
method is used for exploring the neighborhood of ver-
tices [2], [14], [18], [19]. Then, we can obtain a set of vertex
sequences that contain semantic relations among vertices.
These sequences can be denoted as S = {s1, . . . , sN }, where

N is the total number of walk sequences. Each sequence has
s = {v1, . . . , v|s|}.

B. Walking With Perception

To explore the neighbors of vertices, we first generate paths
from a network G. For example, as shown on the left-hand
side of Fig. 2, starting with vertex 1, multiple paths can
be generated with random walks. However, it is very likely
for a vertex walking back to previously visited ones when
moving at random [16], [17]. The first path is trapped into
community 1 (marked in red). Therefore, we aim to generate
the paths containing more possible boundary vertices to benefit
overlapping community detection. We adopt a walking strategy
with perception [16] in the path generation. Given a current
vertex u, the selection probability of a next-hop vertex v is
defined as follows:

quv = 1 − Comuv

min{deg(u), deg(v)} (1)

where quv is the probability of v being selected as the next-hop
vertex, Comuv denotes the number of common neighbors
between u and v, and deg(·) represents the number of degrees.
From (1), we can see that the current vertex u is more
likely to choose the one with less common neighbors as
the next-hop vertex. This walking strategy can discover more
possible boundary vertices, which may benefit the overlapping
community detection. Note that the rejection probability would
be defined as 1 − quv . Then, more paths, such as the third one
in the lower left of Fig. 2 (containing communities marked in
light-yellow and green), can be generated.

To give a more detailed demonstration of the effects of
walking with perception, we provide Fig. 3 to show the prob-
abilities of Vertex 1 choosing the next nodes. The perception
method has a higher probability (12/37) to access the boundary
Vertex 6 comparing with the random one (1/5).

Note that the normalization of (1) in [16] aims to avoid
backtracking because returning to the currently visiting node
may introduce extra overhead and slow down the convergence.
In practice, we find that it does not make too much difference
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Fig. 3. Comparison of (a) randomly walking and (b) walking with perception.
The perception method has a higher probability to access the boundary
vertex 6.

in the performance of the downstream tasks. We conjecture
that: 1) the probability of returning to the revisited node is
small and 2) the revisited node does not hinder discovering
more possible boundary vertices for the model. As such,
we can save the computation of the normalization step in our
algorithm.

C. Context-Aware Community Assignment

After conducting the walking strategy, we can obtain paths
(or call walk sequences), as shown at the lower left-hand side
of Fig. 2. Besides, as mentioned in the introduction, paths
stretching out from a vertex to its n-step neighbors can reflect
the expression of its communities in network structures. Thus,
the vertex community assignment in a generated sequence
is related to its context vertices. As such, with the Gibbs
sampling method [20], we can estimate the conditional prob-
ability of community assignments for each given vertex and
its associated sentence as follows:

p(c|v, s) ∝ p(c|s¬v)
∏

v̂ �=v,v̂∈s

p(c|v̂) (2)

where s¬v represents the sequence s except vertex v, p(c|s¬v)
denotes the conditional probability of a community c given a
sequence s, and p(c|v̂) is the vertex–community distribution
of v (we assume it as prior knowledge generated from global
network structures, and the details will be given later).

Then, we can further derive p(c|s¬v) of (2) as follows:

p(c|s¬v) = N(c, s¬v )∑C
ĉ N(ĉ, s¬v )

(3)

where N(c, s¬v ) denotes the number of vertices belonging to
community c in sequence s except current vertex v, and C
represents the whole set of communities.

Next, we will introduce how we learn the vertex–community
distributions mentioned before. First, we use M ∈ R

V×V to
denote the symmetric adjacency matrix of a network. Then,
we can employ nonnegative matrix factorization (NMF) to
learn the vertex–community distribution [21], [22], which is
formulated by

min
W≥0

||M − W · WT ||2F + α||W||2F (4)

where ||·||F represents the Frobenius norm of a matrix, W ∈
R

V ×C denotes the learned vertex–community distributions that

encode the global understanding of network structures, and α
is a harmonic factor for regularization.

After that, the last part of (2), i.e., p(c|v̂), the probability
of vertex v̂ assigned to community c, can be computed by

p(c|v̂) = Wv̂ ,c∑C
ĉ Wv̂ ,ĉ

. (5)

Note that here we do not directly use W as the final results
for community detection or NEs. Instead, when learning
the representations of vertices and communities, we aim to
preserve the correlation of vertex–community from global
network structure and vertex–vertex from local connectivity
into the same embedding space. To achieve this goal, we first
sample a community from its context vertices (or called a
vertex sequence of walking paths). Then, we adopt a discrim-
inator to learn the vertex embeddings through maximizing the
probabilities of predicting both discrete assigned community
and context vertices. The experimental results demonstrate that
such a jointly learning manner can achieve better performance
than the separate learning ones (for comparison, we will
introduce the results of jointly modeling and the simple NE,
respectively). The details will be shown in Section IV-D.

D. Adversarial Learning for Vertices and Communities

Though we can map the discrete results learned from
generative models into a continuous embedding space with the
GAN techniques, the standard GANs is generally designed to
generate samples of vertices rather than communities. There-
fore, how to generate the samples of underlying communities
is still a challenging problem.

Generator G: Given a target vertex, we design the generator
of ACNE to generate high-quality negative communities. More
concretely, we use a softmax function on a set of negative
vertices. The formulation is given as follows:

G(cn|vt ; θG) = exp(cn · vT
t )∑

ĉ∈C exp(ĉ · vT
t )

(6)

where cn is the possible negative community, vt denotes a
given target vertex, θG represents the parameters of vertices
and communities in the generator, and |C| denotes a predefined
size of the communities. Since we usually set |C| � |V |,
the summation term of the denominator in (6) only takes slight
expense of computation. Generally speaking, the designed
generator aims to sample high-quality negative communi-
ties with the probability calculation G(cn|vt ; θG) instead of
uniform sampling that possibly generates entirely unrelated
communities: the gradient calculated by the inner product of
the embeddings could be a very small number even close to
zero. With (6), the loss function of the generator can be further
formulated by

LG =
∑

vt ∈B
Ecn∼G(·|vt ;θG)D(cn, vt ; θD) (7)

where B represents a batch of target vertices, θD denotes
the parameters of vertices and communities in the discrim-
inator, and D(·) indicates the sigmoid function σ(·) where
D(cn, vt ; θD) = σ(cn · vt

T) = (1/(1 + exp(−cn · vt
T))).
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Moreover, note that the output of the generator [see (6)] is a
discrete index of the communities. As such, the stochastic gra-
dient descent (SGD) method cannot be directly utilized for the
optimization. Based on [23], [24], the policy gradient-based
reinforcement learning method can be used to optimize the
generator as follows:
∇θGLG

= ∇θG

∑

vt ∈B
Ecn∼G(·|vt ;θG) D(cn, vt ; θD)

=
∑

vt ∈B
Ecn∼G(·|vt ;θG) D(cn, vt ; θD)∇θG logG(cn|vt ; θG) (8)

where the gradient of LG is an expected summation of ∇θG log
G(cn|vt; θG) and its weights D(·). Here, we assume D(·)
of (8) as the reward function, and we aim to maximize
the expected rewards. In general, the policy gradient loss is
adopted to maximize the margin between the target vertex and
its assigned negative communities. Specifically, for each pair
of (cn, vt ), this policy will punish trivial negative communities
by lowering down their co-occurring probabilities. At the
same time, the policy will encourage the discriminator to
sample high-quality negative communities, i.e., pair (cn, vt )
with higher similarity parameterized by θD is encouraged to
be generated.

Besides, the reinforcement-based methods usually suffer
from unstable performance and, thus, have high variance
results [25] in practice. Therefore, we refer to [26] and [27]
to alleviate this problem by adding a baseline function to the
reward term D(·). More concretely, we replace it by

D(cn, vt ; θD) +
∑

B∈P
∑

vt ∈B Ecn∼G(·|vt ;θG) D(cn, vt ; θD)

|P | (9)

where the second term of (9) is the baseline function, i.e., the
average reward in the training process that can be used to
reduce learning volatility [26], [27], and P represents the
overall training batches.

Discriminator D: We design a discriminator to achieve the
following two goals: 1) the first goal is to make the context ver-
tices being close in the embedding space while being far from
their negative vertices (similar to the Skip-gram method [5],
[6]) and 2) the second one is to satisfy D(cp, vt ) 
 D(cn, vt ),
where cp, vt , and cn indicate positive community, target vertex,
and negative community, respectively.

To fulfill the above two goals, we aim to learn the target
vertex representation by jointly maximizing the probabilities
of predicting its context vertices and assigned community.
As shown on the right-hand side of Fig. 2, the learning of
each target vertex vt and its associated tuple {vc, vn, cp, cn} in
a given sequence s ∈ B can be formalized by

LD =
∑

s∈B

∑

vt ∈s

Ecn∼G(·|vt ;θG)

×[
logD(vt , vc)

+ logD(−vt , vn) + logD(vt , cp) + logD(−vt , cn)

+ λ
(||vt ||2F + ||vc||2F + ||vn||2F + ||cp||2F + ||cn||2F

)]

(10)

Algorithm 1 ACNE-ST Training Process
Input: Graph G = (V , E), training batch B of vertex

pairs, dimension d of embeddings, community set
C

Result: Parameters θD and θG in the discriminator and
the generator

1 begin
2 Randomly initialize θD and θG ;
3 Using the walking with perception method [16] to

obtain walk sequences S;
4 For each vertex in the sequences, we sample its

community assignment using Eq. (2);
5 Start the first run of ACNE;
6 while not converge do
7 Generate a batch B from walk sequences S;
8 for n-steps in the generator do
9 For each target vertex vt , we sample negative

communities with Eq. (6);
10 Using policy gradient with the formulated loss

Eq. (8) to update the parameters θG ;
11 end
12 for n-steps in the discriminator do
13 For each target vertex vt , we compute D loss

with Eq. (10);
14 Using gradient descent to update the parameters

θD;
15 end
16 end
17 Build up a classifier to obtain the probabilities of

community assignments of vertices;
18 For each vertex in the sequences, its community

assignment would be either the prediction of the
classifier if the probability is larger than δ, otherwise
we sample a community assignment using Eq. (2);

19 Go back to Step 6 for a further run;
20 end

where vc and vt form a vertex pair, vn is the negative vertex
of vt sampled by negative sampling [5], cp is the positive
community generated by (2), cn is its negative community
sampled by (6), ||·||F is the Frobenius norm of embeddings,
and λ is a harmonic factor used for regularization. Note that,
here, {vt , vc, vn, cp, cn} are the parameters of the discriminator
(i.e., θD), which can be optimized with the general gradient
descent technique.

E. Proposed ACNE-ST Training Process

Our proposed ACNE-ST training process can be sum-
marized in Algorithm 1. To begin with, we generate walk
sequences S via the walking with perception method [16]
(Step 3). Then, for each vertex in a sequence, we first sample
its community assignment using (2) (Step 4). After that,
we start the first run of ACNE (from step 6 to step 16).
Similar to the learning process in [13], [28], and [29], we first
fix the parameters θD of the discriminator and train the
generator with the training set. The purpose of the generator
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Fig. 4. Self-training enhanced ACNE-ST model.

is to search for high-quality negative communities as the
inputs of the discriminator. After that, we fix the parameters
θG of the generator and train the discriminator. Note that
both the generator and the discriminator are trained with the
Adam gradient descent method [30]. We use L2 regularization
in the training. After converging, we adopt the parameters
learned by the discriminator as the final vertex and community
embeddings. Besides, we build up a simple classifier by using
Liblinear package [31] with its default settings to obtain the
probabilities of community assignments of vertices (step 17).
For each vertex in a sequence, we adopt its community
assignment when the probability is larger than a threshold δ
(we set it as 0.9 in experiments). Otherwise, we sample its
community assignment using (2) (Step 18). Finally, we go
back to Step 6 for the second run. In general, we totally
run twice of ACNE. The diagram of the self-training method
ACNE-ST is shown in Fig. 4. We adopt it to fine-tune ACNE
to learn more discriminative representations. The detailed
experimental settings are demonstrated in Section IV.

III. COMPLEXITY ANALYSIS

Our methods, including ACNE and ACNE-ST, aim to learn
the following embeddings: θG and θD that represent the para-
meters of vertex and community representations in the genera-
tor and discriminator, respectively. In general, the optimization
complexity of ACNE is O(2L|V ||C|wl), where L is the loop
size, |V | is the number of vertices, |C| is the community
size, w is the random walk sequences of each vertex, and
l is the sequence length. The complexity of ACNE-ST is
O(2L|V ||C|wl + |V |d2), where d is the dimension size and
O(|V |d2) is the complexity of vertex classification.

IV. EXPERIMENTS

In this section, we aim to evaluate the learned vertex and
community embeddings on several real-world datasets in terms
of the subsequent tasks including vertex classification and
overlapping community detection.

A. Experimental Datasets

We carry out experiments on four widely used datasets
where the statistics are shown in Table I.

Cora1 is a citation network collected in [32]. It has
2708 nodes, 5278 edges, and seven labels.

1https://people.cs.umass.edu/∼mccallum/data.html

TABLE I

STATISTICS OF DATA

Citeseer2 is another widely used citation network that has
3264 nodes, 4551 edges, and six labels.

Wiki3 is a language network collected by LBC4 project.
It has 2405 nodes, 12 761 edges, and 19 groups.

DBLP_C45 is a citation network on computer science field
that is collected by Tang et al. [33]. We choose four subfields,
including data mining, database, CV, and AI for experiments.

B. Baselines

The baseline models can be introduced based on the fol-
lowing four groups.

1) General NE: DeepWalk [2] proposes a two-step method:
employ truncated random walks on a given network to obtain
vertex sequences; then adopt the Skip-gram method [5] to
learn vertex representations. Node2vec [3] extends DeepWalk
with a biased random walk to search the network. LINE [4]
introduces the first- and second-order vertex proximity preser-
vation methods during the embedding learning. SDNE [34] is
the first work to utilize a deep neural network. GraRep [35]
exploits a matrix factorization technique (SVD) in network
representation learning.

2) GAN-Based NE: GraphGAN [13] proposes a unified
method that incorporates the generative and discriminative
models to boost NE performance. AIDW [14] introduces a
regularized GAN-based method that can be considered as an
inductive version of DeepWalk. ARNE [15] aims to construct
high-quality negative vertices to achieve better results in the
downstream tasks.

3) General Community Detection: LC [36] introduces link-
age relations among communities. SCP [37] proposes to search
for adjacent cliques to detect communities. MDL [38] presents
a minimum description length way to carry out clustering.
BigCLAM [39] exploits an NMF for overlapping and hier-
archically nested community detection. Similarly, NMF [21]
also uses matrix factorization to obtain vertex–community
distribution in a global understanding of network structures.
Note that we employ NMF as one of the baselines because
we use it to obtain prior knowledge [refer to (2)].

4) Jointly Modeling: MNMF [40] proposes a matrix fac-
torization method that can jointly detect nonoverlapping com-
munities and learn NEs. ComE [41] also introduces a jointly
learning manner by using multivariate Gaussian distributions
to detect communities. More recently, PolyDeepwalk [42]
presents a polysemous embedding approach that can model

2https://github.com/wonniu/AdvT4NE_WWW2019
3https://github.com/albertyang33/TADW
4https://linqs.soe.ucsc.edu/
5http://arnetminer.org/citation (V4 version is used)
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TABLE II

VERTEX CLASSIFICATION ACCURACY (%) ON CORA

TABLE III

VERTEX CLASSIFICATION ACCURACY (%) ON CITESEER

multiple facets of vertices by mapping each facet to an
embedding.

Moreover, we take CNE as a variant of ACNE for an abla-
tion study. Specifically, CNE omits the generator component
in adversarial training, so as to sample negative communities
with a uniform distribution.

C. Experimental Settings and Metrics
We apply random walks on the datasets for the preprocess-

ing where the walk length, window size, and the number of
walks are set to 30, 10, and 50, respectively. For the embedding
dimension setting, we employ a grid-search method by varying
the dimension d ∈ {128, 200, 256, 300, 400} for reference.
For other trivial parameters in the baselines, we adopt their
preferred settings in the articles. Moreover, we utilize the
Adam optimizer [30] to optimize our methods. The initial
rate of Adam is set to 1e-3. For the parameter λ of (10) and
δ mentioned in Section II-E, we set them as 1e-5 and 0.9,
respectively. In the subsequent tasks of vertex classification,
we build a classifier by using the Liblinear package [31] with
its default settings and use accuracy [14] as metrics. Besides,
we employ a modified modularity [43] to evaluate the results
of overlapping community detection.

D. Evaluation of Vertex Classification
In this part, we report the results of classification accuracy

performance for all baselines with various training ratios. The
details are shown in Tables II–VI, where the highest and
second-place scores are highlighted in boldface. Note that,
here, we do not include the baselines in the general community
detection group since they are not specially designed for NE.
We omit NMF because its accuracy scores are much lower than
the others. From these tables, we can observe the following.

1) Our proposed methods can consistently achieve bet-
ter performance than the state-of-the-art models on
all datasets. These results validate the effectiveness
of our methods for integrating overlapping community
information into NE. Moreover, the proposed self-train
method, ACNE-ST, can achieve better performance than
ACNE and CNE, indicating that the NE can further
benefit from the incorporation of the walking strategy
and the soft community assignments.

2) More concretely, ACNE outperforms the jointly learn-
ing methods (i.e., MNMF, ComE, and PolyDeep-
walk) with our proposed adversarial learning targets.
Especially, for the GAN-based learning methods (i.e.,
AIDW, GraphGAN, and ARNE), ACNE also achieves
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TABLE IV

VERTEX CLASSIFICATION ACCURACY (%) ON WIKI

TABLE V

MICRO-F1 AND MACRO-F1 (%) OF VERTEX CLASSIFICATION ON CORA

TABLE VI

MICRO-F1 AND MACRO-F1 (%) OF VERTEX CLASSIFICATION ON CITESEER

improvements, which we conjecture the reason is that
they ignore community information in the learning.

3) Besides, to make a more comprehensive comparison,
we adopt the metrics of Micro-F1 and Macro-F1 to eval-
uate the classification performance. For space limitation,
we select GraphGAN and PolyDeepWalk that perform
well in Tables II and III among the baselines for further
comparison. From Tables V and VI, we can observe
that our methods consistently outperform the baselines,
obtaining about 3.7% and 14.1% improvements on aver-
age in Cora and Citeseer, respectively.

In addition, for DBLP_C4, we adopt smaller training
ratios, so as to evaluate the performance of ACNE under
sparse scenes and accelerate the training speed of classifiers.
As shown in Fig. 5, we select PolyDeepwalk, Node2vec,
and GraphGAN that achieve the best performance from each
baseline group for further presentation. In general, ACNE can
still obtain improvements in sparse situations.

Fig. 5. Vertex classification accuracy of DBLP_C4.

E. Evaluation of Community Detection

In this part, we evaluate the performance of commu-
nity detection by comparing it with the methods in jointly
modeling and general community detection groups. The
results are reported in Table VII where we can observe the
following.
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TABLE VII

MODULARITY RESULTS OF COMMUNITY DETECTION

TABLE VIII

ABLATION STUDY OF WALKING PERCEPTION

1) The proposed methods significantly outperform the
other baselines, which demonstrates that our meth-
ods can detect more meaningful communities. These
results also verify the efficacy of the designed gener-
ator in generating high-quality negative communities.
In addition, ACNE-ST is able to obtain better detection
results than ACNE, which demonstrates its fine-tuned
capability.

2) ACNE can obtain better performance than NMF, which
verifies the superiority of ACNE comes beyond the prior
knowledge learning from NMF (referring to Section II-
C). These results conform to our assumption: the vertex
community assignment is associated with its context.

To sum up, the tasks of vertex classification and overlapping
community detection demonstrate the efficacy of our methods
for jointly modeling vertex connectivity and community struc-
tures with the GAN technique.

F. Analysis on Walking With Perception

To evaluate the impact of walking strategy on perception,
we carry out an ablation study to show the benefits of
detecting overlapping communities. As shown in Table VIII,
the community detection performance decreases by 3.66%,
4.78%, and 4.71% on Cora, Citeseer, and Wiki, respectively,
proving the effectiveness of the walking strategy.

G. Influences of Parameters

In this section, we aim to investigate the influences of the
key parameters on the performance of the proposed methods
in terms of vertex classification and community detection.

1) Dimension d: We first vary the number of the dimension
setting in {128, 200, 256, 300, 400} to evaluate the ACNE per-
formance, where the experimental results are shown in Fig. 6.
Specifically, Fig. 6(a) shows that ACNE can obtain relatively
stable performance for classification accuracy on the Cora,
Citeseer, and Wiki datasets, respectively. The curve of Citeseer
first increases with dimension size at the beginning and then
becomes comparatively smooth after d = 256. Fig. 6(b)
reports the modularity performance on the dimension setting,

Fig. 6. Sensitivity analysis of dimension in ACNE. (a) Accuracy versus
dimension. (b) Modularity versus dimension.

Fig. 7. Sensitivity analysis of walking length in ACNE-ST. (a) Macro-F1
versus walking length. (b) Time versus walking length.

Fig. 8. Influence of modularity on community setting.

where we can observe that the curve of the dataset fluctuates
slightly (about 0.03 points on Cora, 0.05 points on Citeseer,
and 0.08 points on Wiki).

2) Walking Length: We conduct a sensitivity analysis of
the walking length on classification performance and running
time, as shown in Fig. 7. We vary the length of random walk
in {20, 25, 30, 35, 40}. From Fig. 7(a), we can observe that the
classification performance of ACNE-ST is relatively robust to
the walking length on the Cora, Citeseer, and Wiki datasets.
Besides, Fig. 7(b) shows that the running time is linear with
the walking length, which is expected from the complexity
analysis mentioned in Section III.

3) Community C: We estimate the influences of the commu-
nity number C on the ACNE performance. Concretely, we vary
C in the range of {5, 7, 9, 11, 13}, {4, 6, 8, 10, 12}, and
{15, 17, 19, 21, 23} on Cora, Citeseer, and Wiki, respectively.
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Fig. 9. Influence of accuracy on community setting.

Generally, Fig. 9 demonstrates that ACNE achieves the best
performance when C is set to 7 and 19 on Cora and Wiki
correspondingly. On the Citeseer dataset, ACNE can gain
stable performance when C is around 7. The above results
of community settings generally match with the ground-truth
numbers in the datasets, which implies that our methods can
dynamically detect the community number of the network.
Moreover, Fig. 8 shows that the modularity curves grow
with the number of communities. We conjecture that more
fine-grained communities can be found when setting larger C ,
while the accuracy decreases for ACNE falling into the local
optimum, as shown in Fig. 9. Thus, this is a tradeoff between
learning more discriminative vertex embeddings and detecting
more fine-grained communities.

V. RELATED WORK

This work is based on the following categories: network
representation learning, overlapping community detection, and
jointly modeling.

A. Network Representation Learning

It is also known as NE that has received great attention
in recent years. Ordering the work in time, Perozzi et al. [2]
propose DeepWalk that first carries out truncated random
walks to obtain vertex sequences and then applies the
Skip-gram method [5] to learn vertex embeddings. After that,
Tang et al. [4] advance LINE that utilizes breadth-first or DFS
strategies to perform random walks. Then, node2vec [3] is
introduced to combine both of these strategies by designing
biased random walks. Besides, inspired by the development
of GANs [10] that has achieved promising performances in
various tasks [11], some GAN-based models are proposed
for NE. For example, GraphGAN [13] first incorporates
both generative and discriminative models into embedding
learning. Then, AIDW [14] takes an inductive version of
DeepWalk by adopting an adversarial method to regularize the
learned embeddings. ARNE [15] leverages GANs to generate
high-quality negative vertices to boost learning performance,
whereas these mentioned models only learn the local connec-
tivity of vertices while ignoring the global pattern, i.e., the
communities in networks.

B. Community Detection

It is one of the critical tasks in social science [44]. The
traditional methods usually only detect nonoverlapping com-
munities; as such, they do not conform to real-world scenarios
where each vertex may be related to various communities
as it may play multiple roles. To solve this problem, some

methods are proposed for overlapping community detection.
For instance, SCP [37] advances a sequential algorithm
for the detection. Then, LC [36] is proposed to employ a
link-clustering algorithm that partitions the links of vertices
for community detection. After that, MDL [38] introduces a
minimum description way for overlapping group detection.
Afterward, both NMF [21] and BigCLAM [39] utilize an
NMF technique to learn vertex–community distributions and
perform community assignments. However, all these methods
are not specially designed for NE and ignore the local vertex
connectivity.

C. Jointly Modeling

It aims to achieve two tasks simultaneously. MNMF [40]
proposes a matrix factorization-based method that can jointly
detect communities and learn NEs. Then, ComE [41] exploits
a multivariate Gaussian approach to model communities in
the learning. PolyDeepwalk [42] introduces a polysemous
embedding method that regards multiple facets of vertices
as the communities and maps the facets into embeddings.
However, these mentioned models only consider the intra-
community relations that the embeddings of vertices and their
assigned communities are close to each other while neglecting
the intercommunity relations that the embeddings of vertices
and their irrelevant communities are far away. The proposed
generator would generate high-quality negative communities
that can help the discriminator to learn more discriminative
vertex and community embeddings.

VI. CONCLUSION

In general, we propose: 1) an adversarial training model
named ACNE for NE and overlapping community detec-
tion and 2) a self-training enhanced method ACNE-ST that
can fine-tune ACNE to achieve better representation learning
results. Most of the GAN-based methods for NE only exploit
standard GANs to sample vertices instead of communities.
As such, it is still a challenge to utilize community infor-
mation in GANs. To solve this problem, in ACNE, we first
generate different paths expanded from a vertex to its n-step
neighbors, which may represent its communities. After that,
we sample communities for vertices by using a context-aware
community assignment method. At the same time, we design a
softmax generator to obtain high-quality negative communities
for learning. Finally, we employ a discriminator for jointly
learning the community and vertex embeddings. After the
representation learning, we apply a self-training mechanism
called ACNE-ST by adopting soft community assignments
from a simple classifier as supervision to update the weights
of ACNE. Our experiments show that: 1) both ACNE and
ACNE-ST can achieve better performance than state-of-the-art
models and 2) ACNE-ST can fine-tune ACNE to obtain more
discriminative representations.
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